VME Trigger Interface

Introduction

As part of a data acquisition system a VME read out controller (ROC) must be told when to extract data from the front end modules under its control. The experimenter's trigger system is the origin of this signal, and it may be capable of supplying information about the character of the event as well. The VME trigger interface enables a VME read out controller to have access to this trigger information. This data may be used by the ROC to selectively read the subset of modules most relevant to that event.

The VME Trigger Interface module can accept triggers from one of two possible sources: the Trigger Supervisor (TS) or external triggers.

The TS mode is useful for multiple ROC systems. In this mode the trigger data (6 bits) enters the interface module through a special parallel trigger cable driven by the Trigger Supervisor. This cable links all ROCs in the system. The TS itself maintains system busy and asserts signals that are used for gating front end modules. Every ROC in the system must acknowledge to the TS that it has finished handling the front end data relevant to the current trigger before new trigger data can be sent by the TS.

When in TS mode the VME Trigger Interface allows the VME ROC to execute this protocol. (For more information see the Trigger Supervisor User Manual.)

The external trigger mode is useful for single ROC systems or test setups. In this mode up to 4 independent free running user triggers and 2 data levels can be accepted. When the OR of the 4 triggers is asserted all 6 input lines are latched, forming 6 bits of trigger data. Subsequent triggers are held off and a prompt signal is issued that can be used in the gating of front end modules. The busy state is maintained until cleared by the ROC. This is done when the ROC has processed all data associated with the current trigger.

The presence of trigger data at the interface module can be communicated to the ROC by means of interrupts or polling.

When in interrupt mode the condition of valid trigger data causes the interface module to generate a VMEbus interrupt. As part of the interrupt service routine the ROC reads the trigger data register in the interface. The ROC then reads the appropriate front end modules. When this is finished the ROC writes to the trigger data register, enabling new triggers.

When in polling mode the condition of valid trigger data causes the interface module to set a bit in its status register. The ROC is programmed to regularly read this register. When the bit is detected as set the ROC reads the trigger data register in the interface. The ROC then reads the appropriate front end modules. When this is finished the ROC writes to the trigger data register, enabling new triggers.

In addition to the functions described above the interface
has some general purpose I/O capability. The module has an 8-bit output port that is always available for use. When the interface is set up in the TS mode of triggering, the 4 external trigger inputs and 2 data level inputs function as a 6-bit input port. The state of these 6 inputs is latched upon a read of the input port register.

Input/Output Signals

Figure 1 identifies the VME Trigger Interface front panel connectors. Connectors A, B, C mate with 100 ohm impedance twisted pair ribbon cable. Tables 1 and 2 identify the signals carried and their pin assignments.

The A, B connector pair is associated with the TS trigger data cable. This cable is designed to link multiple ROCs with the TS in a linear fashion. The A connector (labeled IN) accepts the cable from the TS. The B connector (labelled OUT) is cabled to the next ROC's A connector. This pattern is repeated for the additional ROCs in the chain.

(TS) (ROC 0) (ROC 1) (ROC 2) (ROC 3)
| ======= A B ======= A B ======= A B ======= A B ...

Up to 8 ROCs can be supported on such a link. The last ROC in the chain must properly terminate the signals of the link (see "Configuring The Interface"). The TS drives 4 independent links for a maximum of 32 ROCs in a system.

The C connector is associated with external triggers and general interface I/O. Trigger 0 - 3 are the independent external trigger inputs. Data_A and Data_B are auxiliary trigger data inputs. Level 1 Accept is the prompt output signal indicating that an external trigger has been accepted. The Busy output is asserted while the Interface/ROC is processing a trigger and cannot accept another.

Table 1. Connectors A, B signal definition

- All signals are differential RS-485
Table 2. Connector C signal definition

- All signals are differential ECL

<table>
<thead>
<tr>
<th>Signal name (Q)</th>
<th>Direction</th>
<th>Pin # (Q/Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strobe</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>Sync</td>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>Late Fail</td>
<td></td>
<td>5,6</td>
</tr>
<tr>
<td>ROC Code Bit 0</td>
<td></td>
<td>7,8</td>
</tr>
<tr>
<td>ROC Code Bit 1</td>
<td></td>
<td>9,10</td>
</tr>
<tr>
<td>ROC Code Bit 2</td>
<td></td>
<td>11,12</td>
</tr>
<tr>
<td>ROC Code Bit 3</td>
<td></td>
<td>13,14</td>
</tr>
<tr>
<td>ROC 0 Acknowledge</td>
<td></td>
<td>19,20</td>
</tr>
<tr>
<td>ROC 1 Acknowledge</td>
<td></td>
<td>21,22</td>
</tr>
<tr>
<td>ROC 2 Acknowledge</td>
<td></td>
<td>23,24</td>
</tr>
<tr>
<td>ROC 3 Acknowledge</td>
<td></td>
<td>25,26</td>
</tr>
<tr>
<td>ROC 4 Acknowledge</td>
<td></td>
<td>27,28</td>
</tr>
<tr>
<td>ROC 5 Acknowledge</td>
<td></td>
<td>29,30</td>
</tr>
<tr>
<td>ROC 6 Acknowledge</td>
<td></td>
<td>31,32</td>
</tr>
<tr>
<td>ROC 7 Acknowledge</td>
<td></td>
<td>33,34</td>
</tr>
</tbody>
</table>
VME Trigger Interface Registers

The VME Trigger Interface is programmed by the user through VMEbus protocols (ANSI/IEEE STD1014-1987). The device meets all VMEbus standards. The VME Trigger Interface is categorized as an A16 - D16 VMEbus slave. All storage locations can be accessed as both Short Supervisory and Short Nonprivileged data. In terms of its interrupt capability the interface is classified as an I(1-7), D08(0), ROAK VMEbus interrupter.

We now describe in detail the registers of the VME Trigger Interface. The local address of each register is given. The base address (A15 - A4) is selected by DIP switches on the board (see "Configuring The Interface").

1. CONTROL/STATUS REGISTER (CSR) [addr = 0]

 The CSR is used to configure the operating conditions of the VME Trigger Interface, as well as provide the current status of the device.

 Bits are read/write unless otherwise indicated.

 (0) EXTERNAL TRIGGER - setting this bit selects the external trigger mode of operation. In this mode the 4 independent free running user triggers and 2 data levels are recognized by the interface.

 Clearing this bit selects the TS mode of operation. In this mode trigger data originating from the Trigger Supervisor is recognized by the interface.

 (1) ENABLE TRIGGER - setting this bit enables triggers from the selected source to enter the interface and influence its behavior.

 (2) ENABLE INTERRUPT - setting this bit allows a trigger accepted by the interface to initiate a VMEbus interrupt.

 (3) TEST - setting this bit enables the test interrupt feature of the interface (see Trigger Data Register).

 (4)-(6) UNUSED

 (7) RESET - (Write only) asserting this bit generates a pulse that clears CSR bits (0)-(3),(15), clears the Interrupt Register, clears the Output Port Register, and clears any latched external trigger.

 The following are Read only STATUS bits.

 (8)-(10) INTERRUPT LEVEL - binary encoded value of the
VMEbus interrupt level LEVEL (0)-(3) that has been selected for the interface by the DIP switches on the module.

(11)-(14) UNUSED - (read as 0)

(14) INTERRUPT PENDING - when set it indicates that the interface has initiated a VMEbus interrupt request and is awaiting acknowledgement from the interrupt handler.

(15) TRIGGER STATUS - when set it indicates that the interface has valid trigger information available in its Trigger Data Register.

2. INTERRUPT REGISTER [addr = 2]

The Interrupt Register is programmed with the 8-bit interrupt vector. During the interrupt acknowledge cycle the reading of this register allows the interrupt handler to identify the VME Trigger Interface as the source of the interrupt request.

All bits are Read/Write.

(0)-(7) INTERRUPT VECTOR

(8)-(15) UNUSED - (read as 1)

3. TRIGGER DATA REGISTER [addr = 4]

The Trigger Data Register contains the trigger information for the event. The contents of the register depends on which trigger mode of the interface has been selected.

Bits of the register are Read only, except where indicated.

(0)-(5) TRIGGER DATA - when in TS mode (CSR(0)=0) this represents the encoded trigger information generated by the TS (see Trigger Supervisor User Manual for more detailed information).

(0) synchronization flag
(1) late fail flag
(2)-(5) ROC code.

When in external trigger mode (CSR(0)=1) this represents the latched status of the 4 external trigger inputs and 2 data levels.

(0) Trigger 0 input status
(1) Trigger 1 input status
(2) Trigger 2 input status
(3) Trigger 3 input status
(4) Data_A input status
(5) Data_B input status.
(6) UNUSED - (read as 0)

(7) TRIGGER MODE ID - this bit is asserted when in external trigger mode, and cleared when in TS mode.

(8) TEST INTERRUPT - (Write only) asserting this bit while in TEST mode (CSR(3) = 1) and with interrupts enabled initiates a VMEbus interrupt.

(9)-(14) UNUSED - (read as 1)

(15) ACKNOWLEDGE TRIGGER - (Write only) asserting this bit while in TS mode allows the interface to instruct the TS that this ROC has completed the handling of front end data associated with the current trigger. Asserting this bit while in external trigger mode clears the busy state of the interface, allowing new triggers to be processed by the interface.

4. OUTPUT PORT REGISTER [addr = 6]

The OUTPUT PORT REGISTER allows the user to control the state of the 8 general purpose outputs of the interface.

All bits of the register are Read/Write.

(0)-(7) OUTPUT (0)-(7) levels.

(8)-(15) UNUSED (read as 1)

4. INPUT PORT REGISTER [addr = 8]

The INPUT PORT REGISTER allows the user to sample the state of the 6 external trigger inputs while the interface is configured in the TS mode. If the interface is in external trigger mode, no sampling of inputs occurs (all bits read as 1).

All bits of the register are Read only.

(0) Trigger 0 input status.

(1) Trigger 1 input status.

(2) Trigger 2 input status.

(3) Trigger 3 input status.
Configuring The Interface

(a) VMEbus Base Address - this is set using the 12 element DIP switch at location U35. Switch element 1 is A4, ..., Switch element 12 is A15. An open switch defines a '1'.

(b) VMEbus Interrupt Level - this is set using the 3 element DIP switch at location U51. The level is binary encoded - Switch element 1 is bit 0, ..., Switch element 3 is bit 2. An open switch defines a '1'.

(c) ROC Number - this is set using the pin header array shown in Figure 3. The physical location of the ROC along the cable is independent from the ROC number. Each ROC must be assigned a unique Acknowledge line (ACK 0-7) on the TS trigger data cable (see Table 1). Denoting 'n' the desired ROC number, this is accomplished by making the following connections:

\[
\begin{align*}
\text{ACK+} & \quad \leftrightarrow \quad \text{ACK}_n(IN)+ \\
\text{ACK-} & \quad \leftrightarrow \quad \text{ACK}_n(IN)-
\end{align*}
\]

and for 'i' not equal to 'n'

\[
\begin{align*}
\text{ACK}_i(IN)+ & \quad \leftrightarrow \quad \text{ACK}_i(OUT)+ \\
\text{ACK}_i(IN)- & \quad \leftrightarrow \quad \text{ACK}_i(OUT)-
\end{align*}
\]

The first 2 connections are wire-wrapped, while the remaining 14 may be wrapped or jumpered (using 0.1" shunts). Figure 3 illustrates the connections for ROC Number = 2.

(d) Trigger Data Cable Termination - the last ROC in the chain must properly electrically terminate the signals of the cable. This is accomplished by inserting the following SIP resistor packs in the last ROC interface module:

<table>
<thead>
<tr>
<th>Location</th>
<th>Package</th>
<th>Resistor</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>R16</td>
<td>SIP8</td>
<td>100 ohm, isolated</td>
<td></td>
</tr>
<tr>
<td>R17</td>
<td>SIP8</td>
<td>100 ohm, isolated</td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>SIP10</td>
<td>180 ohm, bussed</td>
<td>NOTE PIN 1</td>
</tr>
</tbody>
</table>
(e) External Trigger Inputs - Trigger 0, ..., Trigger 3 can be individually enabled to contribute to the OR of trigger inputs by installing jumpers at locations J0, ..., J3. The absence of a jumper means that the input cannot itself trigger the interface. However, the state of such an input will be sampled when this OR signal is asserted. Of course, at least one of the trigger inputs must be enabled to generate the OR signal.